Package 'SlidingWindows'

Title: Methods for Time Series Analysis
Description: A collection of functions to perform Detrended Fluctuation Analysis (DFA exponent), GUEDES et al. (2019) <doi:10.1016/j.physa.2019.04.132> , Detrended cross-correlation coefficient (RHODCCA), GUEDES & ZEBENDE (2019) <doi:10.1016/j.physa.2019.121286>, DMCA cross-correlation coefficient and Detrended multiple cross-correlation coefficient (DMC), GUEDES & SILVA-FILHO & ZEBENDE (2018) <doi:10.1016/j.physa.2021.125990>, both with sliding windows approach.
Authors: Everaldo Freitas Guedes [aut, cre] , Ivan Costa da Cunha Lima [aut] , Gilney Figueira Zebende [aut] , Aloísio Machado Silva-Filho [aut]
Maintainer: Everaldo Freitas Guedes <[email protected]>
License: GPL-3
Version: 0.2.0
Built: 2025-02-28 05:02:01 UTC
Source: https://github.com/cran/SlidingWindows

Help Index


Descritive statistics with sliding windows.

Description

This function generates descriptive statistics of a univariate time series with sliding windows approach.

Usage

descritive.SlidingWindows(y, w = 99, skewness = "moment", kurtosis = "moment")

Arguments

y

A vector containing univariate time series.

w

An integer value indicating the window size w<length(y)w < length(y). If w=length(y)w = length(y), will be computed the function will not slide.

skewness

A non-numeric value. See PerformanceAnalytics package.

kurtosis

A non-numeric value. See PerformanceAnalytics package.

Details

This function include following measures: min, max, mean, median, standard deviation, skewness and kurtosis.

Value

A list containing "w", "min","max","mean", "median", "standard deviation","skewness" and "kurtosis".

References

Guedes, E.F. Modelo computacional para análise de movimentos e co-movimentos de mercados financeiros, Ph.D. thesis, Programa de Pós-graduação em Modelagem Computacional e Tecnologia Industrial. Centro Universitário Senai Cimatec, 2019.

Examples

y <- rnorm(100)
descritive.SlidingWindows(y, w=99, skewness="moment", kurtosis="moment")

Detrended Fluctuation Analysis with sliding windows.

Description

This function generates scaling exponents (long-range correlations) of a univariate time series with sliding windows approach.

Usage

dfa.SlidingWindows(y, w = 98, k = 10, npoints = 15)

Arguments

y

A vector containing univariate time series.

w

An integer value indicating the window size w<length(y)w < length(y). If w=length(y)w = length(y), will be computed the function will not slide.

k

An integer value indicating the boundary of the division (N/k)(N/k). The smallest value of kk is 44.

npoints

The number of different time scales that will be used to estimate the Fluctuation function in each zone. See nonlinearTseries package.

Details

This function include following measures: alpha_dfa, se_alpha_dfa, r2_alpha_dfa.

Value

A list contaning "w", "alpha_dfa", "se_alpha_dfa", "r2_alpha_dfa".

References

GUEDES, E.F.;FERREIRA, P.;DIONISIO, A.; ZEBENDE,G.F. An econophysics approach to study the effect of BREXIT referendum on European Union stock markets. PHYSICA A, v.523, p.1175-1182, 2019. doi = "doi.org/10.1016/j.physa.2019.04.132".

FERREIRA, P.; DIONISIO, A.;GUEDES, E.F.; ZEBENDE, G.F. A sliding windows approach to analyse the evolution of bank shares in the European Union. PHYSICA A, v.490, p.1355-1367, 2018. doi = "doi.org/10.1016/j.physa.2017.08.095".

Examples

y <- rnorm(100)
dfa.SlidingWindows(y,w=99,k=10,npoints=15)

Detrended multiple cross-correlation coefficient with sliding windows.

Description

This function generates DMC Coefficient of three time series with sliding windows approach.

Usage

dmc.SlidingWindows(x1, x2, y, w = 98, k = 10, method = "rhodcca", nu = 0)

Arguments

x1

A vector containing univariate time series.

x2

A vector containing univariate time series.

y

A vector containing univariate time series.

w

An integer value indicating the window size w<length(y)w < length(y). If w=length(y)w = length(y), will be computed the function will not slide.

k

An integer value indicating the boundary of the division (N/k)(N/k). The smallest value of kk is 44.

method

A character string indicating which correlation coefficient is to be used. If method = "rhodcca" (default) the dmc coefficient is generated from the DCCA coefficient. If method = "dmca", the dmc coefficient is generated from the DMCA coefficient.

nu

An integer value. See the DCCA package.

Details

This function include following measures: w, timescale, dmc and cross-correlation between: yx1, yx2, x1x2

Value

A list containing "w", "dmc", "yx1", "yx2", "x1x2".

References

ZEBENDE, G.; SILVA-FILHO, A.M. Detrended multiple cross-correlation coefficient, Physica A 510, 91-97, 2018. doi="doi.org/10.1016/j.physa.2018.06.119".

GUEDES,E.F.;SILVA-FILHO, A.M.; ZEBENDE, G.F. Detrended multiple cross-correlation coefficient with sliding windows approach. Physica A, 125990, 2021. doi="doi.org/10.1016/j.physa.2021.125990".

Examples

x1 <- rnorm(100)
x2 <- rnorm(100)
y <- rnorm(100)
dmc.SlidingWindows(x1,x2,y,w=99,k=10,nu=0, method="rhodcca")
dmc.SlidingWindows(x1,x2,y,w=99,k=10,nu=0, method="dmca")

DMCA coefficient with sliding windows.

Description

This function generates Detrending moving-average cross-correlation coefficient of two time series with sliding windows approach.

Usage

dmca.SlidingWindows(x, y, w = 98, k = 10)

Arguments

x

A vector containing univariate time series.

y

A vector containing univariate time series.

w

An integer value indicating the window size w<length(y)w < length(y). If w=length(y)w = length(y), will be computed the function will not slide.

k

An integer value indicating the boundary of the division (N/k)(N/k). The smallest value of kk is 44.

Details

This function include following measures: w, timescale, dmca

Value

A list containing "w", "timescale", "dmca".

References

KRISTOUFEK, L. Detrending moving-average cross-correlation coefficient: Measuring cross-correlations between non-stationary series. PHYSICA A, v.406, p.169-175, 2014. doi="doi.org/10.1016/j.physa.2014.03.015".

Examples

x <- rnorm(100)
y <- rnorm(100)
dmca.SlidingWindows(x,y,w=99,k=10)

Approximate entropy with sliding windows.

Description

This function computes approximate entropy of a univariate time series with sliding windows approach.

Usage

entropy.SlidingWindows(y, w = 99, k = 4, dim = 2, r = 0.5, lag = 1)

Arguments

y

A vector containing univariate time series.

w

An integer value indicating the window size w<length(y)w < length(y). If w=length(y)w = length(y), will be computed the function will not slide.

k

An integer value indicating the boundary of the division (N/k)(N/k). The smallest value of kk is 44.

dim

The dimension of given time series. See TSEntropies package.

r

The radius of searched areas. See TSEntropies package.

lag

The downsampling. See TSEntropies package.

Details

This function return the list with time series sliding windows.

Value

A list contaning "w", "ApEn", "FastApEn".

References

Pincus, S.M. (1991). Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2297–2301. doi="doi.org/10.1073/pnas.88.6.2297".

Examples

y <- rnorm(100)
entropy.SlidingWindows(y, w=99, k=4, dim=2, r=.2,lag=1)

Detrended Cross-Correlation Coefficient with sliding windows.

Description

This function generates Detrended Cross-Correlation Coefficient of two time series with sliding windows approach.

Usage

rhodcca.SlidingWindows(x, y, w = 98, k = 10, nu = 0)

Arguments

x

A vector containing univariate time series.

y

A vector containing univariate time series.

w

An integer value indicating the window size w<length(y)w < length(y). If w=length(y)w = length(y), will be computed the function will not slide.

k

An integer value indicating the boundary of the division (N/k)(N/k). The smallest value of kk is 44.

nu

An integer value. See DCCA package.

Details

This function include following measures:

w, timescale, rhodcca

Value

A list containing "w", "timescale", "rhodcca".

References

GUEDES, E.F.; ZEBENDE, G.F. DCCA cross-correlation coefficient with sliding windows approach. PHYSICA A, v.527, p.121286, 2019. doi="doi.org/10.1016/j.physa.2010.10.022".

ZEBENDE, G.F. DCCA cross-correlation coefficient: Quantifying level of cross-correlation, Physica A, v. 390, n. 4, p. 614-618, 2011. doi="doi.org/10.1016/j.physa.2019.121286".

Examples

x <- rnorm(100)
y <- rnorm(100)
rhodcca.SlidingWindows(x,y,w=99,k=10,nu=0)

Sliding Windows.

Description

This function generates sliding windows approach of a time series.

Usage

SlidingWindows(y, w = 99)

Arguments

y

A vector containing univariate time series.

w

An integer value indicating the window size w<length(y)w < length(y). If w=length(y)w = length(y), will be computed the function will not slide.

Details

This function return the matrix with time series sliding windows.

Value

A list containing "w", "SlidingWindows".

References

Guedes, E.F. Modelo computacional para análise de movimentos e co-movimentos de mercados financeiros, Ph.D. thesis, Programa de Pós-graduação em Modelagem Computacional e Tecnologia Industrial. Centro Universitário Senai Cimatec, 2019.

Examples

y <- rnorm(100)
SlidingWindows(y,w=99)